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AlfvBn-gravitational waves propagating in a Boussinesq, inviscid, adiabatic, 
perfectly conducting fluid in the presence of a uniform aligned magnetic field 
in which the mean horizontal velocity U ( z )  depends on height z only are con- 
sidered. The governing wave equation has three singularities, at the Doppler- 
shifted frequencies Q, = 0, +_ Q,, where QA is the Alfvkn frequency. Hence the 
effect of the Lorentz force is to introduce two more critical levels, called hydro- 
magnetic critical levels, in addition to the hydrodynamic critical level. To study 
the influence of magnetic field on the attenuation of waves two situations, 
one concerning waves far away from the critical levels (i.e. Q, 9 Q,) and the 
other waves a t  moderate distances from the critical levels (i.e. Q, > Q,), are 
investigated. In the former case, if the hydrodynamic Richardson number JIJ 
exceeds one quarter the waves are attenuated by a factor exp{ - 2n(JH - &)a} 
as they pass through the hydromagnetic critical levels, at  which Q, = & QA, and 
momentum is transferred to the mean flow there. Whereas in the case of waves 
at  moderate distances from the critical levels the ratio of momentum fluxes on 
either side of the hydromagnetic critical levels differ by a factor exp { - 274 J - g) i}, 
where J ( > &) is the algebraic sum of hydrodynamic and hydromagnetic Richard- 
son numbers. Thus the solutions to the hydromagnetic system approach asymp- 
totically those of the hydrodynamic system sufficiently far on either side of the 
magnetic critical layers, though their behaviour in the vicinity of such levels 
is quite dissimilar. There is no attenuation and momentum transfer to the mean 
flow across the hydrodynamic critical level, a t  which Q, = 0. The general theory 
is applied to a particular problem of flow over a sinusoidal corrugation. This is 
significant in considering the propagation of AlfvBn-gravity waves, in the 
presence of a geomagnetic field, from troposphere to ionosphere. 

1. Introduction 
The theory of momentum transport by gravity waves in a conducting fluid 

in the presence of a magnetic field is an area of considerable interest in meteoro- 
logical, oceanographic, geophysical and astrophysical problems. Additional in- 
terest in this field stems from the attempts to simulate solar wind-geomagnetic 
interactions. The examination of specific cases will serve as a check on the general 
theory. Recently Booker & Bretherton (1967, hereafter referred to as BB) have 
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investigated the problem of the propagation of internal gravity waves in a shear 
flow with a critical level, namely a level where the mean velocity of the basic 
flow is equal to the horizontal phase velocity of the waves. Using linear theory 
and the normal-mode technique they have obtained, for an inviscid Boussinesq 
fluid, the wave equation 

where UI is the vertical disturbance velocity, U is the basic velocity, c ( = C, -I- ic,) 
is the horizontal phase velocity, k is the horizontal wavenumber, 

N = ( - (Y/Po) 4 d d Z ) :  (1.2) 

is the Brunt-Vaisala frequency, po is the basic density and the suffix z denotes 
differentiation with respect to x .  Equation (1.1) first appeared in the works of 
Taylor (1931), Goldstein (1931) and Synge (1933), and will hereafter be referred 
to as the TGS (Taylor-Goldstein-Synge) equation. The TGS equation (1.1) is 
singular at  the critical level for all real phase velocities. However, by allowing the 
phase velocity to have a small imaginary part, and using the asymptotics of the 
time-dependent initial-value problem, Booker & Bretherton obtained a matching 
condition across the singular level which states that a wave travelling through the 
critical level has its amplitude attenuated by a factor exp [n(J, - $)*I, JH being 
the hydrodynamic Richardson number, which is a ratio of the stabilizing effect 
of gravity to the destabilizing effect of shear. The linearized velocity obtained by 
this method eventually tends to infinity at  the critical level, thus vitiating the 
linearization. Booker & Bretherton concluded that, once generated, the internal 
gravity waves may be reabsorbed by the mean flow without necessarily invoking 
turbulence or other dissipative processes. That is, as the wave propagates vertically 
through the critical level, it is strongly attenuated. The Reynolds stress, which 
is an appropriate measure of the magnitude of the waves, is reduced on the other 
side by a factor exp { - 2n( JH - $)*); this result was also experimentally verified 
by Bretherton et al. (1967). The analysis of Booker & Bretherton (1967) pertains 
to a non-rotating system. However, Jones (1967) has shown that, when the whole 
system rotates about a vertical axis with angular velocity !2, for any small steady 
inviscid perturbation to a baroclinic shear flow the vertical flux of angular 
momentum is conserved and is discontinuous only across the lower and the 
upper critical levels, namely the levels where the Doppler-shifted frequency 
!2, ( = kU - (T) equals plus or minus the Coriolis frequency. Recently Bretherton 
( 1969) has examined a quasi-sinusoidal wave train of inertio-gravitational waves 
with rotation and has given a physical picture for momentum transfer by con- 
sidering the dispersion relation and vertical group velocity. He concluded that 
in a rotating system the process of critical-layer absorption depends only on the 
gross features of the situation and not on the details of the critical layer. Further, 
he inferred that as the wave approaches the lower or upper critical level it be- 
comes an inertial oscillation but is not reflected, in spite of the presence of the 
forbidden zone where the modulus of the Doppler-shifted frequency is less 
than the Coriolis frequency. Detailed analysis of Jones’ equation confirms this 
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conclusion, showing that the main discontinuity in momentum flux occurs a t  
the lowest or highest of the three singularities, depending on whether the waves 
are upward- or downward-propagating . 

The object of the present paper is to study the internal gravity waves in 
a perfectly conducting shear flow with an aligned magnetic field. The basic 
governing differential equation of wave motion is of order two and is singular a t  
the Doppler-shifted frequencies Qd = 0, QA,  where Q, = AE is the Alfv6n 
frequency and A is the Alfvbn velocity. That is, there are three singularities in 
the hydromagnetic flow whereas equation (1.1) has just one, at Qd = 0. The layer 
corresponding to Qd = 0 is the hydrodynamic critical layer and those corre- 
sponding to Qd = & QA are called magnetic critical layers. These magnetic 
critical layers are due to  the rotational nature of the Lorentz force J x B, which 
has an effect analogous to that of the Coriolis force discussed by Jones (1967). 

The propagation of internal gravity waves in a perfectly conducting fluid with 
a transverse magnetic field has been discussed by Rudraiah & Venkatachalappa 
(1972 b) ,  and here the governing wave equation is not singular at any point in the 
fluid. This problem is analogous to the problem of the propagation of gravity 
waves in a viscous fluid studied by Hazel (1967). The corresponding problem of 
propagation of gravity wave in a, perfectly conducting fluid in the presence of 
a magnetic field with a Coriolis force has been investigated recently by Rudraiah & 
Venkatachalappa (1972a). They have shown that the combined effect of the 
Lorentz force and the Coriolis force is to generate AlfvBn-inertio-gravitational 
waves. The propagation of momentum from layer to layer is also discussed in 
detail. 

The present paper yields information about the time-dependent lee waves in 
a perfectly conducting shear flow with an aligned magnetic field. Information is 
gained about the large horizontal perturbation velocities around Qd = _+ QA.  

The problem of matching across the critical levels can be resolved by following 
the initial-value problem of BB. This matching process can also be performed 
by taking ci > 0 and including viscosity, magnetic viscosity and heat conduction. 
For the hydrodynamic case, Hazel (1967) has shown that the matching condition 
across the critical level in the viscous problem is same as that for the inviscid 
initial-value problem of BB. It is of interest, for conducting flows also, to establish 
whether the matching condition of dissipative flows leads to the same conclusion 
as that for the initial-value problem of non-dissipative conducting flows and this 
will be presented elsewhere. 

In  the present paper we also try to discuss the mechanism of absorption, re- 
flexion and transmission of waves at the critical levels. We try t o  discover, 
following Bretherton (1966), the physical explanation for absorption by ex- 
amining the motion of the wave packets. It is shown that as a wave propagates 
vertically through the critical levels it is strongly attenuated. The algebraic 
sum of the Reynolds stress and the Maxwell stress, which is an appropriate 
measure of the magnitude of the wave, is reduced on the other side of the for- 
bidden zone I Q d l  < Q A  by a factor exp { - 2n(J - $)&}, where J is the algebraic 
sum of the hydrodynamic and hydromagnetic Richardson numbers. The stability 
of such flows has been recently investigated by Rudraiah (f970), who has shown 
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that a sufficient condition for stability is J > B. In  this paper we confine our 
attention to such stable situations. 

The results of the present paper are of geophysical and astrophysical interest, 
one geophysical application being the study of the earth's core. Another topic of 
geophysical interest is concerned with the propagation of Alfvkn-gravity waves 
from the troposphere to the ionosphere. The astrophysical application of these 
MHD waves has been discussed by Lighthill (196Q), who dealt with both 
mathematical and physical aspects of the problem side by side. 

2. Derivation of wave equation 
To derive the wave equation for the motion of a perfectly conducting fluid in 

the presence of an aligned magnetic field with vertical density stratification the 
following approximations are made. 

(i) The motion is two-dimensional, variations being in the x and z directions 
(i.e. horizontal and vertical directions respectively). 

(ii) The fluid is inviscid, perfectly conducting and adiabatic. It is of interest 
t o  inquire as to the effects of relaxing this assumption: work relating to this is 
in progress. However, we note that, since the problem considered in this paper 
pertains to atmospheric, astrophysical and oceanic phenomena where, although 
the flow velocities are rather small, the Reynolds number and the magnetic 
Reynolds number are quite large, an inviscid perfectly conducting flow model 
would appear to be a reasonable one. 

(iii) The Boussinesq approximation. 
(iv) The rotation of the earth may be neglected. The effect of rotation on 

internal gravity waves in the presence of a magnetic field has been recently 
investigated by Rudraiah & Venkatachalappa ( 1 9 7 2 ~ ) .  

(v) The perturbation velocity (u, w) from the basic state U(z )  in the x direction 
and the perturbation magnetic field (hz, h,) from the aligned uniform basic 
magnetic field Ha = constant are so small that 

(vi) The total Richardson number 

J=J,+J - [NZ "1 > t everywhere, 
n r -  @ q z q  

where R, = LA is the Alfvh frequency, A = (pH;/p,)fr being the Alfven velocity, 
pis the magnetic permeability, k is the horizontal wavenumber, JH = N2/ (dU/dz )2  
is the hydrodynamic Richardson number and Jnl = Q%/(dU/dz)2 is the hydro- 
magnetic Richardson number, which is the ratio of the stabilizing effect of 
magnetic field to the destabilizing effect of shear. 
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Under these assumptions the linearized equations of motion are 
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where P is the perturbed total pressure, p is the perturbed density, g is the 
acceleration due to gravity, D = a/at + UD,, D, = a/ax and D, = a/az. By 
eliminating u, P, p, hx and h, from (2.1), we obtain a single wave equation 

+ A 2  -+ U -  ( ~ U , W , , , + ~ ~ W , , , ) - ~ A ~ U ~ W ~ ~ ~ ,  = 0. (2.2) 
(:t :%) 

This equation forms the starting point of the analysis of this paper. The hydro- 
magnetic wave equation (2.2) is of order six whereas the hydrodynamic wave 
equation of BB is of order four. 

We assume that the two-dimensional transient disturbance produced by 
temporary extraneous forces may be represented in the form 

where each Fourier component has a well-defined horizontal wavenumber k ( > 0) 
and phase velocity c and has a vertical structure of the form 

On comparing (1 .1)  and (2.4) we see that although both represent second-order 
differential equations they are quite different in the sense that the hydromagnetic 
wave equation (2.4) represents the telegraphic equation, having three singularities 
at Q, = 0, & QA, whereas the hydrodynamic wave equation (I .  1) represents the 
simple harmonic equation, having only one singularity, at Qd = 0. Therefore 
the effect of the Lorentz force on the flow is to increase the number of critical 
levels. It is of interest to note that the appearance of d&/dz in (2.4) does not 
imply a damping of the wave, but rather a change in its structure such that 8 
varies with z even though the wave strength is constant (see $ 5  below). For a 
uniform stream, with U independent of z, (2.4) reduces to 
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3. Solutions of wave equations 
In  this section we try to discuss the solutions of the wave equations (2.4) 

and (2.5) near the singular levels, namely the levels at which Qd = 0, i a,, at 
moderate distances ( Qd > a,) and large distances ( Qd 9 QA) from the singular 
levels using the method of Frobenius. Near the critical level Qd = 0, i.e. U = c, 
the complete solution of (2.4) is of the form 

8 = A,(z - 20)' [I + al(z - x0), + . . .] +B,(z - ~ o )  [I + b1(z - zO)2+. . .], (3.1) 

where zo is such that U(zo)  = c, A, and B, are constants of integration and a, 
and b, are known constants. Thecomplete solution of (2.4) nearthe uppermagnetic 
critical level Qd = QA, i.e. U = c + A ,  is of the form 

8 = [A,+B,log(z-zl)][l+c,(z-zl)+ ...I+ B, c (F;) - ( z - - J k ,  (3.2) 
k=O r=o 

where z1 is such that U(z,) = c + A  and A ,  and B, are constants of integration. 
A similar solution can be obtained near the lower magnetic critical level 
Q,=-Q,,i.e. U = c - A .  

We note that solution (3.1) near the critical level U = c is entirely different 
from the solution of the hydrodynamic equation (1.i). Equation (3.1) has no 
branch point a t  the critical level z = zo whereas the solution of ( 1. I )  does have 
a branch point at z = zo. However, to find the solutions away from the critical 
levels we assume that Qd > Q, and N 2  + Q; 9 Qi. In  this case a power-series 
solution for (2.4) in descending powers of z -zo  may be obtained; = l/(z-zo) 
is substituted into the solution and the resulting equation can be solved in a 
power-series expansion about 5 = 0 by the method of Frobenius. The expansion 
is valid in the range 

To find the solution far away from the critical levels we assume that 

N >  l a d l  9 Q A .  

8 = A,(z - Z0)4+iPO + B4(z - zo)b-iPo, 

The solution is then given by 

(3.4) 

where ,uo = (J13 - $)&, JH ( > g) being the hydrodynamic Richardson number. 
Thus the solution is independent of magnetic field. Therefore, far away from 
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the critical levels the effect of the magnetic field on waves is negligible. Hence it 
is clear that the solutions to the hydromagnetic system approach asymptotically 
those of the hydrodynamic system given by BB only when the relation 

N >  l a d l  % aA 

is satisfied. In  zones where this condition does not hold, the hydromagnetic and 
hydrodynamic systems yield widely differing solutions which, however, con- 
verge on either side af the zone. Similar behaviour is observed in the case of 
propagation of internal gravity waves in a rotating system discussed by Jones 
(1967). Therefore the behaviour of solutions in both non-rotating and rotating 
hydrodynamic systems far away from the critical layers is almost equivalent. 

We note that the omission of higher order terms in the power series in (3.4) 
does not modify the structure of wave far away from the critical levels. If c 
is complex, i.e. c = cr -t ici, then the critical level x, is defined by 

V(Z,) - c, = 0. 

In  this case the solution near the critical level is given by (3.1) with zo replaced 
by zc+ici/Ua. Solutions (3.3) and (3.4), which are valid at  moderate and at large 
distances from the critical levels respectively, are similar to that of the hydro- 
dynamic equation (1.1) near the critical level Qd = 0. These solutions are also 
similar to one obtained by Rudraiah & Venkatachalappa (1972a) for a rotating 
system. 

Now, if we fix the branch of the complex powers in (3.3) by taking 

(2 -x0)k%n = I ~ - - ~ 1 ~ e ~ i i l l m l o g l a - ~ o I  if > zo, (3.5) 
it then follows that 

( 2  - zo)Wrrn = - i e!cPrnn Iz - xo14 eW+nlog Iz-rc~l if 2 < zo. ( 3 . 5 ~ )  

The magnitude of each term in (3.3) at a given distance above the critical level 
52, = 0 is not the same as that at  the same distance below but differs by a factor 
exp ( 5 pmn)  however small ci may be, provided that ci > 0. This clearly shows 
that the effect of the Lorentz force at the critical levels is to increase the attenua- 
tion or to decrease the amplitude by a factor of JAf relative to the hydrodynamic 
results of BB. However, for waves far away from the critical levels the attenuation 
factor, from (3.4), is exp { -pan}, which is exactly the same as the corresponding 
hydrodynamic result of BB. To discover the nature of the wave near the critical 
evels we use (3.1) and (3.2). The magnitude of each term in (3.1) is the same a t  
a given distance above or below = 0. However, although the magnitude of 
the first term in (3.2) is the same at a given distance above or below the critical 
level & = Q,, the second term is not, the square of the magnitude differing by 
an amount (B212n2. Thus the square of the amplitude of the waves is decreased 
on either side by an amount IB21 n2. 

The solution of (2.5), which is the case of uniform basic flow, is 

(3.6) 

(3.7) 

0 = Ceims+De-imz, 

where C and D are constants of integration and 

m = k[NZ/(Qi- Q5) - 114. 
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mi > 0 if ci > 0. (3.5) 

To study the nature of m we have considered, separately, the two situations 
i2: < and s22, > Szq. If Qj < Qi, i.e. the Doppler-shifted frequency is less 
than the Alfven frequency, m is imaginary irrespective of the magnitude of N 
and m = ikm,, where 

In this case the complete spatial distribution of velocity associated with the 
first solution in (3.6) is 

w = Re [C e-kmlz exp { i k ( z  - ct ) } ] ,  (3.10) 

which represents a plane wave of variable amplitude, diminishing with height x ,  
and with a phase front (for real c) given by kx - kct = constant. The second solu- 
tion i2 = D ekmie can be interpreted similarly. 

The situation Qi > C&, i.e. when the Doppler-shifted frequency is greater 
than the Alfvh frequency, is quite different. This implies that if N2/( 0: - Q;) 9 1 

I (3.11) 

and if N2/(Q$ - Q;) < 1 m N i k .  (3.12) 

Signs in (3.11) and (3.12) are chosen to satisfy (3.5). 

4. Upward- and downward-propagating waves 
The phenomenon of absorption, transmission and reflexion of momentum at 

the critical levels will depend on whether the waves are upward- or downward- 
propagating. Therefore in this section we try to interpret solutions discussed in 
3 3 as upward- or downward-propagating waves. As in the hydrodynamic case 
(BB), in magnetohydrodynamics it is difficult, in a non-uniform medium, to 
specify which part of an oscillatory motion corresponds to a wave travelling 
in the upward direction and which to a wave travelling downwards since there 
is a continual interchange between the two. In  a uniform media, on the other 
hand, precise and physically important identifications may be made. Therefore 
the cases of uniform and non-uniform media are discussed separately. In this 
section we consider only the uniform media; the case of non-uniform media will 
be discussed in the next section. 

For the case of uniform media, the solution is given by (3.6). From (3.11), we 
find that if ad is negative m is also negative, so that the phase fronts move down- 
wards, if !& is positive m is also positive. Thus the first solution in (3.6) describes 
a wave with a downward component of phase velocity. However, the influence 
of such ;I wave propagates upwards so it is called an upward-travelling wave. 
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The second solution will similarly be interpreted as a downward-travelling wave. 
The significance of these waves, as in hydrodynamics (BB), can be interpreted 
in the following three ways. 

(i) Group velocity approach. This dispersion relation, from (3.7)) is 

v = kU 2 (k2A2+ k2N2/(m2+ k2)}+. (4.1) 

According to (3.11) we must take the minus sign when m and Q, are positive 
and the plus sign when they are negative. In  either case, for the fist solution 
in (3.6) 

av/a-lam = m( i.2: - Q5)2/k2N2Qd, (4-2) 

which is always positive and hence corresponds to an upward component of group 
velocity. Thus the first solution in (3.6) represents an upward-propagating wave 
and similarly the second solution represents a downward-propagating wave. 

(ii) Energy approach. A second way of understanding upward- and downward- 
moving waves comes from energy consideration. The total mean rate of work 
done by the conducting fluid, in the presence of the magnetic field, below any 
level on the fluid above is %, where P is the total disturbance pressure due to 
hydrodynamic and hydromagnetic pressures and an overbar denotes the time 
average. The horizontal momentum equation for the disturbance, namely 

au I ap p ~ ~ a h ,  ( V - c ) -  = ---+-- ax Po ax Po a x )  (4.3) 

- 
shows that 

This, for the first solution in (3.6), takes the form 

PW = - (U - C) [po"w - p h x ] .  (4.4). 

pw = (pom(c(2/k2Qd) (Q; - Q5)) 
which is always positive since S22 > 0;. Thus the wave energy is flowing up- 
wards. I n  the case of second solution, on the other hand, the flow of energy is 
downwards. We note that there will be an upward total horizontal momentum 
flux represented by po"w- ,uhz hB coupled with this flow of energy, where by the 
total momentum flux we mean the algebraic sum of the momentum fluxes in 
the fields and the material media. From this it is clear that the momentum is. 
transferred not only by the material media but also by the magnetic field. 

(iii) Nightly complex horizontal phase velocity. The third way of seeing that the 
first solution of (3.6) represents an upward-travelling wave is by considering c 
to  be slightly complex (ci > 0). Because of (3.8) the solution Ceims tends expo- 
nentially to zero as z -+ co. Thus the wave amplitude a t  every point increases with 
time, but at any fixed time decreases as z is increased. Thus the variations in 
amplitude move upwards. Hence the first solution corresponds to an upward- 
travelling wave. Similarly the second solution represents a downward-travelling 
wave. 

- 

1s 
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5. Absorption of waves near the critical levels 
In  the case of uniform media discussed in $ 4  the wave equation (2.5) is 

singular throughout the region of interest if i& = Q, as !& is constant. Hence we 
cannot deal with the transfer of momentum to the mean flow. However, in the 
case of non-uniform media the wave equation (2.4) is singular at !& = 0, & QA, 
which defines distinct critical levels. In  this case we can discuss the transfer of 
momentum to the mean flow. The absorption of waves near the critical levels 
is discussed using (a)  momentum transfer to the mean flow and (b )  the group 
velocity approach. 

5.1. Transfer of momentum to the mean. flow 
In this section we discuss the transfer of momentum near to, at  moderate dis- 
tances from and far from the critical levels and the interpretation of upward- and 
downward-travelling waves. We find that the vertical flux of mean horizontal 
momentum is given by 

- 
poU.w-phxhz = Re 

where w* is the complex conjugate of w. By differentiating (5.1) with respect to x 
and using the wave equation (2.4) we get 

Hence the total upward momentum flux is conserved everywhere except a t  the 
critical levels, where the substitution of the wave equation (2.4) is invalid. Thus 
the upward transfer of momentum by the algebraic sum of the Reynolds stress 
and the magnetic stress has zero divergence, and there can be no transfer to the 
mean flow. Hence, either the momentum flux or the total stress (UW - (p/po) h,h,) 
can be taken as the measure of the strength or magnitude of the wave. 

- 

At the critical level Qd = 0, equation (5.1), using (3.1), becomes 

(5 .3 )  p o z L w - , u ~ z  = Re(- iP0 [a:(2A,n:+ATB:)+...]), 
k3UE 

which has a constant leading term. In  other words, the momentum is continuous 
across the critical level Qd = 0. This is contrary to the hydrodynamic result of 
BB, where it was shown that the momentum flux is discontinuous across the 
critical level Qd = 0. Near the critical level i& = Q, the total momentum flux 
is given by 

R e ( y p o -  dz when x > zl, 
(5.4) 1 po"w - phx h, = 

dul 
[iBAg+ IB,12.rr] when z < zl. I - I  Re ( - 2phy/dz 

This is essentially discontinuous across the critical level Q, = sZ,. Similarly we 
can show that the total horizontal momentum flux is discontinuous across the 
critical level fid = - QA.  
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The total momentum flux at moderate distances from the critical levels is 
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(5.5) 
From this it is clear that the magnitudes of each term in (5.5) at a given distance 
above and below the critical level Q, = 0 are not the same but differ by a factor 
exp { - 2pm7r}. For the first solution A,(z - zo)4+i~m the energy flux 

- 7% = - ( Q,/k) [Po uw -,&&I 
is positive and for the second solution it is negative. So the first solution is 
associated with the upward transfer of energy and the second with the downward 
transfer of energy. 

Similarly, the total momentum flux far from the critical levels is 

(5.5a) 1 POP0 
2k -- [(A4I2- (B4(2] when z > zo, 

[ ( A 4 ( 2 e 2 P @ -  ( B 4 ( 2 e - 2 p o " ]  when z < zo. - [  - 
poUw-ph,h, = 

The magnitudes of each term in (5.5a) at a given distance above and below the 
critical level Q, = 0 are not the same but differ by a factor exp { - 2p07r}, which is 
exactlythe same asthe hydrodynamicresult of BB. Thus the waves are attenuated 
by a factor exp { - 2pO7r} and the influence of magnetic field on the absorption of 
waves at the critical levels is negligible. This process of critical-layer absorption 
depends only on the gross features of the situation and not on the details of the 
critical layer. 

Now we look at the amplitude of the growing wave motion (i.e. ci > 0). 
For the upward-travelling wave the amplitude below the critical layer at 
z2 (i.e. where Qd = -aA) is IA31 (z -~~l4exp{p~i . )  and above the critical layer 
at x1 (i.e. where Qd = QA) is (A,( Iz-zo(*, which is substantially smaller than 
IA31 I~-~~l~exp{,u,7r}. Hence the amplitude of the growing wave decreaees as z 
increases. Similarly, for the downward-travelling wave the amplitude decreases 
with decreasing z .  

It is of interest to know the magnitude of the velocity and energy at the critical 
layers when ci = 0. For the solution with ci = 0 both the vertical velocity (w)  
and the horizontal velocity (u = Re [ ( i l k )  dw/dz]) are large near the critical level 
Q, = QA, where w varies as log ( z  - zl) and u varies as ( z  - zI)-l, whereas in the 
hydrodynamic case of BB w is small and u is large near the critical level Q, = 0. 
This is consistent with the particle motion becoming more and more horizontal 
as the wave approaches z = zl; the kinetic and magnetic energies are concentrated 
entirely in the horizontal motion, but the potential energy is still associated with 
vertical displacements, so the wave frequency tends to zero. Both the horizontal 
wave energy per unit volume and the shear associated with the wave vary as 

15-2 
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( z  - x ~ ) - ~ .  However, if the phase velocity c is complex there will be no singularity 
at z = x1 and none of these quantities will become infinite a t  zl. The same be- 
haviour will be observed at !& = - QA but at Qa = 0 the magnitudes will be 
small. Far from the critical levels the solution is given by (3.4). From this it 
follows that, since the vertical and horizontal velocities vary as ( x - x , ) ~  and 
(x-x,)-i respectively, the horizontal wave energy per unit volume varies as 
( z  - xo)B and the shear stress associated with the wave varies as ( x  - z,)-Q. 

5.2. Group velocity near critical levels 

In the previous section we discussed the phenomenon of absorption of waves at 
the critical levels using the concept of momentum transport. An alternative 
,description of this process, following Bretherton (1966), can be given by using the 
concept of group velocity. In  a slowly varying media an internal AlfvBn- 
gravitational wave with horizontal wavenumber k and vertical wavenumber m 
satisfies a dispersion relation 

CT = k U & { Q; + k2N2/(m2 + k2)}4. (5 .6 )  
We consider a wave packet as a localized disturbance with a reasonably well 
defined dominant frequency and wavenumber. This wave packet moves with 
group velocity 

As the wave packet approaches the upper critical level (i.e. Qa -+ QA) ,  from (5.6), 
we have m -+ co, i.e. the wavelength 2r /m -+ 0, and hence the wave fronts be- 
come more and more horizontal. Then there will be no wave motion and the 
vertical group velocity 

C, = (aa/ak, aglam). 

decreases to  zero as wave approaches Qd = QA. Near this level z = zl, at which 
Qa- QA vanishes, (5.7) can be written as 

a@m - @IN) ( U  - c): U ~ ( Z  - zl)*. (5 .8 )  
Thus, when z - x1 is small the height z of the wave packet satisfies 

&/dt = b(z - xl)*, 

where b is a constant. On integrating this equation we obtain 

( z  - z1)9 = - 2/bt. (5.9) 

In  the hydrodynamic case of Bretherton (1969) this equation is of the form 

z - z, = - l /at ,  

where the critical level z, is at ad = 0, whereas in our case the critical level z1 is 
at Qd = In,. 

Prom (5.9) it follows that the time taken by a downward-travelling group to 
pass from a level z3 to a level z4 is 

(5.10) 
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which is arbitrarily large if z4 is sufficiently near zl. In other words, the wave 
packet takes an infinite time to reach the critical level. A wave group will thus 
never reach the critical level. So the wave packet is neither transmitted nor 
reflected and simply slows down until either diffusion, turbulence or other non- 
linearities destroy it. Similar results can be obtained near the critical level z = z2. 
However, near the critical level x = xo, i.e. Qd = 0, m is imaginary; in fact m 
is imaginary for all IQ,( < QA. This region IQ,l < QA, as can be seen from (5.6), 
is the forbidden zone for propagation of waves. 

The above analysis is confined to SZz < SZ: + N2. However, it is of interest to 
know the corresponding results when Qi 3 Q; + N 2 .  In  this case, let z = z, be 
such that Cli(z,) = N 2 +  Q:. At z = z,, m becomes very small and if z exceeds 
z,, i.e. Cli > N z +  SZ:, m becomes imaginary. Thus the total internal reflexion 
occurs at  x = z, as the relative frequency (Qi - Q;)* of an internal AlfvBn- 
gravitational wave cannot exceed N ,  and the position of the point of reflexion is 
changed with respect to that for the hydrodynamic case. In this neighbourhood 

where the sign is positive if x, is a minimum and negative if it  is a maximum. 
Then h / a m  is proportional to f I x  - x,13 and the time taken for the wave group 
to reach z, and be reflected is finite. 

6. The time-dependent disturbance above a sinusoidal corrugation 
In this section, the general results of $93-5 are illustrated by considering 

a particular problem similar to that of BB. We consider a constant shear flow 
(see (6.1) below) with a uniform applied magnetic field Ho parallel to the flow. 
Since the fluid is perfectly conducting and non-viscous and the applied magnetic 
field is uniform, the basic velocity is independent of the magnetic field. We take 
N 2  to be independent of the height z, and the basic velocity V(x) in the x direction 
is as shown in figure 1 : [ ;;;-h) (0 < x < 2h), 

U ( z )  = 
(2 > 2h). 

The fluid is unbounded above and initially at rest everywhere: 

w = 0 everywhere for t < 0. (6.2) 

At time t = 0 the disturbance is introduced by raising a sinusoidal corrugation 
on the lower boundary at z = 0, and subsequently maintaining it: 

w=acoskx on x =  0 for t > 0, (6.3) 

w+O as z+co  for t > O .  (6.4) 

where a is the amplitude of the corrugation. The upper boundary condition is 

The perturbation w(x, z ,  t )  satisfies the wave equation (2.2), which was obtained 
on the basis of a linearization which is valid only for small amplitude a. However, 
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FIGT~RE 1. The basic state. - - -, critical levels; m, critical layers. 

for any amplitude, it ultimately breaks down. U, vanishes everywhere except 
at z = 2h, where it becomes infinite and is replaced by a delta function: 

(6.5) u, = - U'6(X- 2h) .  

This is equivalent to  matching the pressure and vertical velocity across the 
perturbed interface between two separate fluids in regions 1 and 2 .  

We now introduce the dimensionless variables 

(6.6) 

where K is the dimensionless wavenumber, y is the dimensionless phase velocity, 
S is the Alfvh number and J is the modified total Richardson number. Use of the 
sinusoidal variation in $ and the Laplace transform in time yields a convenient 
solution of wave equation ( 2 . 2 ) .  Let 

I c g  = x/h, 6 = (2-h)/h,  7 = U't, K = kh, 
y = c/U'h, S = AlU'h, J = N2/U'2+K2S2,  

4 6 ,  5, 7 )  = Re [%5, 7 )  ei"51, 

For the convergence of this integral, we assume that the relevant part of the 
complex plane corresponds to yi > 0. By applying the Laplace transform to the 
wave equation ( 2 . 2 )  we get two equations corresponding to region 1 and 2 : 

[ ( 1 - y ) 2 - f 1 2 ] 8 5 5 + [ J - K 2 ( 1 - y ) 2 ] 8  = 0 in 5 > 1 forregion 1, (6.8) 

in - 1 < 5 < 1 for region 2 .  (6.9) 



Momentum transport by gravity waves 23 1 

Each of these equations reduces to the corresponding one in BB in the limit 
8 + 0 .  

Now we need suitable boundary conditions. The continuity of pressure across 
the interface between the regions 1 and 2 yields 

@15-@,5+@/(1-y) = 0 at 5 = 1, (6.10) 

which is same as the hydrodynamic boundary condition of BB. The continuity 
of vertical velocity gives 

(6.11) w1 = w, at < =  1. A h  

The boundary conditions (6.3) and (6.4) now take the form 

@ - t o  as <-fa, (6.12) 

h a 1  w = --- on C = - - l .  
(an)+ i K y  

(6.13) 

From (6.13) it is seen that y = 0 is a pole which arises because of the specific 
time dependence assumed in (6.3). If the forcing at z = 0 is removed after a finite 
time, the boundary condition will have no singularity in the complex-y plane. 
In  the corresponding problem of hydrodynamics, Booker & Bretherton have 
obtained the solution of the wave equation in terms of modified Bessel functions. 
However, in the present analysis we cannot obtain the solution of the wave 
equation in terms of Bessel functions but the solution can be obtained using the 
Frobenius method. 

In region 2, the solution of wave equation (6.9) near < = y is 

@ = Al(C-Y)211(C-Y)+B1(C-y) J,(C-Y), (6.14) 

where A ,  and B, are constants of integration, 

Il(5-y) = 1+a,(C-y)2+.. . ,  

Jl(C-7) = 1 +b,(C-y)'+ ..., 
az = ( 2 +  J)/6Sz, b, = J/2S2. 

The solution near the critical level 5 = y + S is 

@ = [A2 + Bzlog (C- y - x)l4?(C-r - 8) + B, JzK-r - 81, (6.15) 

where A, and B, are constants of integration, 

I&-y-S)  = l+c1K-y-S)+..*, 

J&-r-8) = l+dl(C-y-s)+ ..., 
C, = 4(J-K2S2-2) ,  dl = 4(J-K2S2+7). 

A similar solution can be obtained near the critical level C = y - S. 
In region 2, away from these three singularities, the solution of (6.9), neglecting 

K2(C- X), compared with J (i.e. assuming that the Doppler-shifted frequency 
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is very much smaller than the algebraic sum of the Brunt-Vaisala frequency LV 
and the Alfvh frequency Q A ) )  is 

8 = A,(<- y)++iW,(<- y )  + B3(< - y)+-iPm J3(< - y) ,  (6.16) 

where m2 I,(<-y) = 1+- ( C W Y ) 2 +  ...) 

J3(5-y) = 1 +- (&?)2+ ...) q 2  

yl = -1- ip,, r2 = -&+ipm. 

In  region 1) the solution of (6.8) consistent with the upper boundary condition 

,& = A &El), (6.17) 
(6.12) is 

4 

where (6.18) 

withZd > 0 wheny, > 0. 

conditions (6.10), (6.11) and (6.13)) be determined in the form 

A 

The constants A,, B, and A, in (6.16) and (6.17) can, by using the boundary 

a 1 ( l - y ) - i k  
- Q(2n);t i K y  ( - 1 - y)4 

a I ( 1 - y ) i F m  
- Q(2n)t iKy  ( - I - y)+ 

--- 

x {[I + i l ( l  -r)IJ& -7) - ( 1  -7) J i ( 1 - y )  - (+-ip,) J3(1 y)}) (6.19) 

B --- 

x {[I f i l(1-Y)l&(1-y) - (1 - y )  I;( 1 -7) - (4 + ipm)13( 1 - y)} ,  (6.20) 

x {&(I - Y) J 2  1 - Y) - J 3 ( 1  - y )  G(1- y ) l ( 1 -  y )  - 2ip,1,(1 - y )  J,(I - 7))) 
(6.21) 

where 

Q = ( - 1 - Y)~’” ( 1 - y)+m { ( 1 - 7) I,( - 1 - 7) Ji(  I - y ) 

+ (& - ~pnJ13( - 1 - y )  y )  + [I + i q  1 - ?)]I,( 1 - y )  J3( - 1 - y ) }  

((1 -7) J,( - 1-71 - ( - 1 - y)-@m( 1 - y ) i P m  

+ (++ipm) J,( - 1 - y ) 4 ( 1 - y )  + [I  +iZ( 1 -y)]J,(l -y)I,( - 1 - y)} ,  
-7) 

(6.22) 
and the primes on I ,  and J,  denote derivatives with respect to c. 

The complete solution to the problem is 

(6.23) 

where the path of integration lies along the real axis but is deformed to pass 
above the singularities of the integrand (i.e. yi > 0) .  
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7. Wave propagation after a long time 
Equation (6.23) is in general mathematically complicated and will be simplified 

if T is large. In  this case we use the ‘method of steepest descents’ (Jeffreys & 
Jeffreys 1946,s 17.04) tointegrate (6.23). Thevalueoftheintegralcanbeobtained 
by considering the neighbourhoods in the complex-y plane of points where 
either the integrand is singular or the derivative with respect to y of the co- 
efficient of T in the exponent in (6.23) vanishes (saddle point). If there are no 
saddle points the largest contribution comes from the pole at  y = 0. 

In  the remaining portion of this section, using the above method, we show that 
if the total Richardson number J 2 1 the waves are very much reduced in 
magnitude. Away from the critical levels, the motion becomes that of a standing 
wave pattern, there being several small decaying wave motions superposed on 
this steady wave motion. There are regions above and below each of the critical 
levels y = and = called critical layers which decrease in thickness. In  
these two critical layers, the horizontal momentum associated with the wave is 
nearly all transferred to the mean flow. In  the region around the critical level 
5 = Q there is no absorption of waves. If [/r is kept constant as T -+ co, as in the 
case of BB, the largest contribution comes from the saddle point. This corre- 
sponds to an upward-travelling dispersing group of waves and its dominant 
frequency is such that the corresponding vertical component of group velocity 
is @. 

The above results can be proved by considering the singularities of the in- 
tegrand in the integral in (6.23). These are (a)  y = 0, a pole, arising from the 
applied boundary condition (6.3); (b )  y = & 1, branch points; (e )  y = 1 -t S,  
essential singularities, 1 --f 00; (d)  y = 1 f J/K, branch points, I = 0; ( e )  y = 6 & S ,  
branch points. In  addition there may be poles where Q(y) = 0. The singularity ( a )  
is similar to that of the hydrodynamic case of BB whereas other singularities 
differ from the hydrodynamic case because of the presence of the magnetic field. 
The singularities ( e )  are due to the occurrence of the logarithmic terms in the 
solutions near the critical levels Qd = & Q,. From a theorem (an extension of 
Miles’ (1961) theorem to MHD) proved by Narayan (1972) it follows that all 
these singularities will lie in yi < 0 provided J > 4, and we consider only these 
exponentially vanishing wave motions in our analysis. A zero of Q in yi > 0 
corresponds to an exponentially growing mode; the zeros of Q can be found 
explicitly and are not relevant to the present analysis. 

We assume that neither of the singularities ( e )  coincide with any other 
singularities, and the path of integration C is deformed according to figure 2 so 
that all the singularities lie in the region yi < 0. As r -+ 00 the integrand becomes 
exponentially small, except in the regions near the real axis yi = 0. 

The largest contribution to the integral (6.23) comes from the pole at y = 0 
and is equal to 2ni times the residue at this pole. Thus at large times, i.e. as 
T + 00, equation (6.23) takes the form 

~ ( 6 ’ 6 , ~ )  + Re((2n)iiKlim [y8(y)eiRt]}. (7.1) 
Y-+O 
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FIGURE 2. The deformed contour of integration. 

In region 1 this reduces to 

where 

This is a stationary upward-propagating wave (see 8 4). In region 2, away from 
the critical levels, we have 

w N Re (eiKt((2n)4iK[Ai(0) @+ih13(%) +Bi(O) c:-4"J3([)]}), 

Y - 4  Y-tO 

The first term in (7.3) describes an upward-travelling wave and the second a 
downward-travelling wave. For an upward-travelling wave the wave amplitude 
is reduced by a factor exp ( -,u,n) above the upper critical level c = fl, fiom its 
value below the lower critical level < = &. If ,urn is very large the waves are 
completely attenuated. 

If 617 is kept constant and positive as T --f co the saddle point for the exponent 
in (6.23) is given by 

(7.3) 
where 4 0 )  = lim IIyA,(y)l, Bi(0) = lim [yB3(y)I- 

- 
(7.4) 

However, is the group velocity of a wave of frequency K y  (Jeffereys & 
Jeffereys 1946, 5 17.08), hence (7.4) is the condition that the vertical component 
of group velocity of a wave of frequency K y  in the uniform region 1 should equal 
</r. The integration by the saddle-point method contributes to the integral, the 
resulting wave, with frequency equal to that at the saddle point, decreasing in 
amplitude like T-$. 

Using the Riemann-Lebesgue lemma it can be shown that the contributions 
from tho other singularities vanish as T --f co. However, we examine in detail the 
contribution from one of the branch points (e) ,  i.e. y = 6- S.  We put y = 6 -  X 4 S 
to find the contribution from the neighbourhood of y = 6-8. The integrand is 
expanded as a power series in 6 and we consider only the leading term, which is 
of the form 

W ( g , c > T )  = Re [&pKp[iK(5-6T+WI 1 ( A 2 ( 6 ) + ~ 2 ( ~ ) + B 2 1 0 g ( - 6 ) ) d s ]  * 

(7.5) 
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The path of integration Ze is that portion of the deformed contour near the point 
y = 5-S, and A2(5) and B2(5) are the values of A, and B, when y = S-X. On 
integrating (7.5) by the method of contour integration, we obtain 

w(5,Qr) = Re{(l/r) (z?r)aexp[iK(5-57++r)] 
x [ A , + B , - @ B ~ ~ T - B ~ $ ( -  l)+log(K~)]}, (7.6) 

where @ is the digamma function, defined by $(z) = I”(z ) / r ( z ) ,  r(x) being the 
gamma function (Abramowitz & Stegun 1965, $6.3). For the hydrodynamic case 
Booker & Bretherton have expressed the solution in terms of the modified 
Bessel function. Note that in the corresponding problem in hydromagnetics dis- 
cussed here the solution involves a digamma function. 

Equation (7.6) describes locally plane sinusoidal waves with phase 

K(f ; -  gr + ST). 

This phase function is different from that for the hydrodynamic case of BB. 
As in hydrodynamics, the lines of constant phase are advected with the basic 
velocity and the phase front becomes nearly horizontal. Differentiation of the 
phase function with respect to 5 and 5 respectively shows that the horizontal 
wavenumber remains constant and the vertical wavenumber increases with 
time. From (7.6) it follows that the vertical velocity decays as 7-l and the 
horizontal velocity increases logarithmically as log (Kr). The vertical energy 
density decays as r2 whereas the horizontal energy density increases with time. 
The Reynolds stress is different above and below each critical level and the 
oscillations are absorbed into the mean flow. This absorption is associated with 
the continuum distribution of the disturbance over a band of frequencies, each 
frequency having a distinct critical level. In  the hydrodynamic problem of BB, 
both the vertical and horizontal energy densities decay with time whereas in 
the hydromagnetic problem discussed here the vertical energy density decreases 
with time but the horizontal energy density increases logarithmically. There 
are other waves contributed by the singularities (b ) ,  (c) and (d) and all these waves 
decay to zero as r -+ 00. 

In  the above discussion we have assumed that the singularities (a)-(e) are 
distinct. Even when the singularity ( e )  coincides with (a),  (b) ,  (c) or (d) equation 
(6.23) can be integrated and the corresponding wave decays to zero as T -+ 00. 

However, the region in which 5 -+ S as T -+ co (critical layer) is of more interest. 
When the singularity y = 5- S coincides with y = 0 the contributions from these 
singularities can no longer be separated and their neighbourhoods must be 
treated together. Now the integrand is expanded as a power series in y - <+ S ,  
assuming 5 is also small, and if we put y - C+ S = A/RT the leading term in the 
equation is 

where the contour Eae is from h = -ioo to h = -i00 round both h = 0 and 
h = -K7(5-8). Equation (7.7) gives the structure of the velocity distribution. 
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It is of interest to compare the velocity given by (7.7) with equation (5.9) of 
Booker &: Bretherton (1967). In their analysis the integral is evaluated around 
Q(i = 0 and the integrand is a power series in A. They found that a typical vertical 
velocity has a magnitude of order r-8 and a typical horizontal velocity is of order 
r4.t In the present analysis, however, the integral is evaluated in the neighbour- 
hood of the magnetic critical layer ad = Q, and the integrand is a logarithmic 
function of A. A typical vertical velocity has a magnitude of order log (Kr )  and the 
horizontal velocity is of order T log (Kr) .  Thus both vertical and horizontal velocity 
components increase with time 7, and ultimately nonlinear terms which have 
been ignored earlier will become important and the theory will be invalid. 
However, this invalidation may be delayed by taking a, in (6.3), small enough. 
We note that this logarithmic singularity in (7.7) is mainly due to the effect of 
Lorentz force at  the critical level Qd = QA.  Similar results can be obtained across 
the critical level Qd = - QA. 

Finally, in region 1 we get some interesting results when K @ 1 and 15 - y I > 8, 
and the motion is everywhere very nearly horizontal. Then in the final steady 
state y = 0, I N J = (pk + &)k and 13( 1 - y )  = 1, J3( I - y )  = I .  Under these con- 
ditions we have 

Above the critical layers the ratio of the energy fluxes, or the total stresses, 
associated with the downward- and upward-travelling waves is 

(7.9) 

Thus, if p, is large, very little energy is reflected by the discontinuity in U, at 
the interface between the regions 1 and 2. Below the critical layer Rd = - R, the 
difference in the energy fluxes is even larger, being 

(7.10) 

Hence, if p, > 1 the effect of the region above the critical layer (Q, > R,) 
on the region below (a, < - Q,) is almost negligible. Thus the critical layers act 
as an absorbing barrier of great effectiveness. On comparing the corresponding 
hydrodynamic results of BB with the present results (7.9) and (7.10), we find 
that the effect of Lorentz force at the critical layers is to increase the absorption 
(since pm > p,,) and to lessen the reflexion by the discontinuity in V, at the inter- 
face between regions 1 and 2. 

8. Transient disturbances in perfectly conducting shear flows 
Although a similar analysis to that of a disturbance above a sinusoidal corruga- 

tion discussed in $ $ 6  and 7 may be used to describe the disturbance due to 
a transient stimulus in a shear layer, the resulting integral is mathematically 

t In BB there are misprints in the order of T, i.e. T& and 7-4 are interchanged. The 
above forms are the correct ones. 
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complicated and cannot be evaluated in terms of elementary functions. However, 
following BB, we can make some general statements about the velocity dis- 
tribution. 

The asymptotic solution for the velocity distribution discussed in § § 6  and 7 
has a pole at y = 0 because of the assumed lower boundary condition w = a cos kx. 
However, in the present analysis there will be no pole a t  y = 0. Hence the 
dominant contributions come from the singularities of the type (b)-(e) and decay 
with time. The singularities (b ) ,  (c)  and (d) arise because of the velocity profile 
assumed in $ 6  and would not be present in an unbounded uniform shear flow. 

I n  the present case the velocitities associated with the singularity ( e ) ,  as in 3 7, 
can be shown to  be of the form 

Each term in (8.1) describes locally plane waves of very small vertical wave- 
length - 1/2nktU,, which decays as t-l. The horizontal disturbance is given by 

i aw 
k: a Z  

u = - - = R  e { [P + G log kt] U, exp [ik(x - Ut + At)]} ,  

which increases logarithmically with time. We find that the decay of the vertical 
velocity field of the form (8.1) is a manifestation of critical-layer absorption for 
a continuum spectrum of frequencies. Each frequency is associated with one of 
the critical levels z,, zo and z2 and at each height z there are corresponding fre- 
quencies cr,, vo and cr2 for which this height is critical. A qualitative explanation 
of this absorption effect is provided by the concept of group velocity discussed 
in 8 5.2. 

We now check the validity of the linearization assumed in this paper, using 
(8.1) and (8.2). The nonlinear terms u awlax + w awl& and h, ah$x + hz ah,/& are 
of order F2t-l, whereas the linear terms awlat + U awlax and ah$t + H, ah,/ax are 
of order Ft-$. Thus, in the absence of dissipation, the nonlinear terms should be 
taken into account after a time of order F-l however small F may be. By this 
time the velocity gradients 

u, = ktPUE exp [ik(x - Ut +At)] (8.3) 
have become comparable with U,, so the flow may become turbulent. However 
the vertical scale of the perturbation is then of order k-lF, therefore any 
turbulence may be expected to be of low intensity since P can be made small. 
Also, by this time the waves are almost completely absorbed by the mean flow, 
so the main results of this paper are justified. Even for the second terms of (8.1) 
and (8.2) the validity of linearization can be justified. 

Finally, we can obtain an expression for the total change of momentum of the 
mean flow as a result of the absorption of the disturbance. We consider the total 
velocity and the magnetic field in the form 

U(2) + U,(X, z ,  t )  + u(x, 2, t ) ,  K(X, 2, t )  + w(x, 2, t ) ,  

Ho+ H,(x, 2, t )  + &(x, 2, t ) ,  HZ(x, 2, t )  +hB(x, z , t )*  
Here the perturbations u, w, hy, h, and U,, W,, H, and H, are assumed to vanish 
rapidly at  all finite times so that their integrals converge. U,, W,, H, and H, 
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may roughly be described as second-order disturbances associated with first- 
order small amplitude perturbations u, w, h, and h, of zero mean. However, their 
separation from u, w, h, and h, need be made precise only to the extent of 
specifying 

S $ U ~ x = S I ~ w d s = S + m h , ~ x = S f m h ~ a ~ = O .  - m  -m  (8.4) 

Then we obtain from the continuity equation for the fluid and the continuity 
of magnetic field that, if W, and H, vanish at  some level, 

W,dx = H,dx = 0 (8.5) 1:: SI, 
1:: at all levels. The integral U,dx does not necessarily vanish and can be 

identified as the mean-flow total momentum at that level (value of z )  associated 
with the disturbance; we calculate its total change during the absorption process. 

The equation for the horizontal velocity is 

a a a - ( U +  u, + u) + ( U  + u, + U)2+ ax ( U  + u, + u) (w, + w) 
at 

l a p  P a  a 
Po ax Po ax Po 8.2 

+ - - - - - (Ho + H, + hJ2 - - (H,  + H, + h,) (H, + h,) = 0. (8.6) 

Since P, u, w and U, are assumed to vanish rapidly as 1x1 -+ co, on integration 
equation (8.6) gives 

If the disturbances to the basic flow U ( z )  and the magnetic field Ho are of small 
amplitude we can assume that U, < u, &. < w, H, < h, and H, < h,. Then we have 

By expressing the disturbance as a double integral over a continuum of wave- 
numbers and horizontal phase velocities in the form 

and using Parseval's theorem, we obtain 

where 

is the total stress (i.e. the algebraic sum of the Reynolds stress and the magnetic 
stress) for each Fourier component as computed in $ 5 .  Thus the total momentum 
transferred upwards past each level is the integral over all wavenumbers and 
frequencies of the total stress associated with each Fourier component separately. 

uw - W P O )  h,h, = 4 Re [uw* - (P/Po) hXh3 
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We have proved earlier, in $5,  that the total stress is conserved everywhere 
except at the critical levels. Hence the only contribution to the right-hand side 
of (8.10) at any given height z comes from those components for which 

c = U ( z )  & A .  (8.11) 

So the integration with respect to c is equivalent to integration with respect to z 
and hence, from (8.8) and (&lo), we have 

(8.12) 

where [uw - (,u/po) hzhz]'r is the sum of the discontinuities, across the critical 
levels, in the total stress associated with those Fourier components with phase 
velocities defhed by (8.11) and wavenumber k. Equation (8.12) states that the 
total transfer of momentum to the mean flow associated with the passage and 
partial absorption of a transient disturbance is finite, is distributed over a range 
of heights and can be calculated from the discontinuities across the critical 
layers (if any) of each Fourier component separately. If the disturbance is 
initiated below z = z2 and travels upwards, and if the total Richardson number J 
is moderately large, the upward-travelling wave is almost completely absorbed 
in passing through the critical levels z = z2, z,, and zl. The sum of the discon- 
tinuities is then simply minus the value of the total stress below z = z2, which is 
in turn, by (4.5), directly connected to the net upward flux of total wave energy 
at x = z2 .  

9. Conclusions 
The presence of a magnetic field introduces three critical levels of which one 

(a, = 0) is the hydrodynamic critical level and the other two (Q, = & a,) are 
hydromagnetic critical levels. The wave equation (1.1) corresponding to the 
problem of BB is a simple harmonic type with a singularity at  the hydrodynamic 
critical level, whereas the hydromagnetic wave equation (2.4) of the present 
problem is in the form of telegraphic equation with three singularities a t  hydro- 
dynamic and hydromagnetic critical levels. We find that the attenuation of 
waves takes place only at the magnetic critical levels. That is, the internal 
AlfvBn-gravity waves propagating with a vertical component of group velocity 
in a perfectly conducting shear flow in the presence of a magnetic field are almost 
completely absorbed in passing through the critical levels Qd = k sl, provided 
that the Richardson number JH 2 1. For t < JH < 1 less absorption takes place. 
In other words the vertical momentum flux, which is an appropriate measure of 
the magnitude of the waves, is reduced by a factor exp { - 274 JH - i)*) in passing 
through the critical levels. Comparing this result with the hydrodynamic result 
of BB, we conclude that the effect of the magnetic field on the attenuation of 
waves is negligible. This absorption mechanism is independent of viscosity, finite 
electrical conductivity or other dissipative processes. When this absorption 
mechanism is studied through the group velocity approach we find that the 
wave group travelling with the appropriate local group velocity would take an 
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infinite time to reach the critical levels and thus will never reach the critical 
levels 0, = & QA. Hence it is neither transmitted nor reflected but is completely 
absorbed. Near these critica,l levels the vertical wavelength becomes very small 
and the motion is entirely in the horizontal direction; there will be no waves in 
the ‘forbidden zone’ 1 Q d l  < In,. 

In  5 7 it was found that the presence of a magnetic field decreases the reflexion 
of waves at the discontinuity in 6. Also, we found that away from the critical 
levels the motion becomes that of a standing wave pattern. The analysis of $57 
and 8 shows that the nonlinear terms become important after a finite time. 
However, by this time the waves are almost completely attenuated. The main 
conclusion of 5 8 is that the total transfer of momentum to the mean flow asso- 
ciated with the passage and partial absorption of a transient disturbance is 
finite, distributed over a range of heights and can be calculated from the dis- 
continuity across the critical layers (if any) of each Fourier component separately. 

The authors are indebted to a referee for valuable suggestions and comments. 
One author (M. V.) is grateful to the C.S.I.R. for providing a Junior Research 
Fellowship. This paper constitutes a portion of the Ph.D. thesis of M. Ven- 
katachalappa. 
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